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has  provided informat ion about  the nature  of the 
bonds formed by an  a tom of a t ransi t ion element  with 
covalence 3 and with one d orbital  available.  When  
one d orbi tal  is avai lable  and  two bonds are formed, 
the bonds are l inear ly  directed, as was shown by  
q u a n t u m  mechanical  calculation of the  two best ~pd 
hybr id  bond orbitals tha t  can be constructed with only 
one d orbital  avai lable (]Pauling, 1931). When  four 
bonds are formed with use of one d orbital,  they  are 
directed toward the corners of a square. The con- 
figurations observed for gold and silver in the three 
minerals  under  discussion indicate  tha t  m a x i m u m  
s tabi l i ty  is achieved for a tercovalent  element  with 
one d orbital  avai lable for bond format ion through 
the formation of two oppositely directed single bonds, 
the  r emain ing  valences being used for the formation 
of bonds in the plane at  r ight  angles to the line formed 
by  the first two (Pauling, 1931). These considerations 
suggest a ref inement  in the method of calculating bond 
numbers.  On the assumpt ion tha t  the bond-forming 
power of an orbital  is proport ional  to its concentrat ion 
in the bond direction, the two equivalent  orbitals 
corresponding to the two best bonds tha t  can be formed 
with the use of a single d orbital  are of the form 

1 1 V5 
2V--- ~ s:I: ~-~ Pz+ ~ 3  4 (Pauling, 1931). 

They have ~ d  character  (the square of the coefficient 
of d~ in the above equation), which corresponds to 
the single-bond radius for gold 1.309 A.* We ac- 

* Calculated by means of equation (12 c) (Pauling, 1948 b) 
with 6 = ~ .  

t Calculated by means of equation (12 c) (Pauling, 1948 b) 
with (~ = ]:~-. 

cordingly predict,  wi th  use of the single-bond radius 
for tel lurium, 1.348 ~ ,  t ha t  the gold- te l lur ium distance 
for two oppositely directed single bonds would be 
2.66 /~, which agrees exact ly with the average of the 
values for the corresponding bonds in Table 4, which 
range from 2-63 to 2"68 A. Wi th  this refinement,  the 
bond numbers  of the longer gold- te l lur ium bonds 
would be calculated with use of the radius 1.43 J~t 
for gold, and their  values would be correspondingly 
a li t t le larger. 

The authors  wish to express their  thanks  to Dr 
Donald  V. Higgs for making  the drawings of Figs. 1 
and 2. 
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A method is described for calculating the average height of the vector rods in the three-dimensional 
:Patterson of haemoglobin. The calculations have been carried out for the a-helix. They show that  
the simple models previously considered for haemoglobin give peaks which are too high, and that  to 
obtain even rough agreement either less than about half the protein must be put into chains 
parallel to the X axis or considerable irregularity must be introduced. The evidence suggests 
that  the folded polypeptide chain does not run in one direction for more than 20 A at a stretch. 

In troduct ion  

The three-dimensional  ]Patterson synthesis  of horse 
methaemoglobin  has, as one of its features, rod-shaped 
regions of high vector density,  paral lel  to the X axis, 

which Perutz (1949) interpreted in terms of s traight  
rods of high electron densi ty in the molecule; he 
suggested tha t  these rods were due to folded poly- 
peptide chains arranged in hexagonal  close packing 
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and spaced 10.5 J~ apart, with their length parallel 
to X. Bragg, Howells & Perutz (1952) have shown 
that  the IF(Okl)I's are consistent with such an arrange- 
ment. 

Pauling, Corey & Branson (1951) have proposed a 
helical fold for the polypeptide chain known as the 
3.7 residue ~-helix. When so folded, the amino acid 
residues repeat at regular intervals of 1.5/k along the 
chain direction. Perutz (1951a, b) has reported a 
reflexion of 1-5 A spacing from planes perpendicular 
to the fibre axis in artificial polypeptides and fibrous 
proteins of the ~-keratin type and also, though less 
clearly, in haemoglobin. The reflexion in haemoglobin 
is possibly weaker than in hair, and certainly weaker 
than in the artificial polypeptides (Perutz, un- 
published). 

The above facts might suggest that  the structure of 
haemoglobin consisted mainly of polypeptide chains 
folded into 3.7 c~-helices, and packed side by side 
parallel to the X axis of the crystal. Rough calculations 
show that  the vector rods to be expected from such 
a model would be more dense than those observed. 
The present paper describes an attempt to calculate 
rather more accurately the absolute vector density 
of the rods on the basis of certain simple models, and 
to compare the results with the observed density. 

A parallel attack on this problem has been made by 
Bragg, Howells & Perutz (1952), who, working in two 
dimensions on the X projection, have shown that  the 
absolute value of IF(063)I is only one-third of the 
value calculated for a model consisting entirely of 
straight and parallel chains extending throughout the 
length of the molecule. 

We shall use the terms 'coiled chains' or 'rods' to 
denote the coiled polypeptide chains, and 'vector rods' 
to denote the regions of high vector density they 
produce in a Patterson. In what follows 'haemoglobin' 
will refer to horse methaemoglobin in the usual 
monoclinic form. 

Method of calculation 

I t  is necessary to have a method which is sufficiently 
accurate without being too laborious. Simple methods 
involving merely counting vectors tend to be in- 
accurate; complete structure-factor and Patterson 
calculations would be prohibitively lengthy. The 
method described here is a compromise. 

The basic idea is to reduce the three-dimensional 
calculation to a two-dimensional one. This is done by 
calculating the average vector height over a short 
leng/h in the rod direction. The steps in the calculation 
are as follows: 

(a) The idealized model.---A crystal is taken to 
consist entirely of infinite lengths of c~-helices packed 
in an infinite regular hexagonal array. The Patterson 
of an end-on projection of the chains is calculated. 

(b) The real model.raThe haemoglobin molecule is 
considered to be made up of a certain number of 

lengths of ~-helix distributed in a certain way. The 
electron density of the co-helix is '  assumed to be 
uniform in the rod direction; by counting vectors the 
ratio is found between the vector densities, in three 
dimensions, of the idealized and the real model at 
chosen points in their Pattersons. 

(c) The experimental data.--Consider the chosen point 
in the observed Patterson. The average value over a 
length of 3 A on either side of it in the rod direction 
is evaluated. This is then compared with the calculated 
value. I t  is assumed that  this averaging will compensate 
for the theoretical assumption that  the electron 
density of the ~-helix was uniform in the rod direction. 

The advantages of this method are that  in step (a) 
the effects of side chains, heat motion, diffraction etc., 
can be easily and accurately allowed for. This is 
difficult to do if a vector-counting method is used 
throughout. Vector counting is then employed in step 
(b) to get the ratio of vector density between a known 
and an unknown case. Finally, since the observed 
three-dimensional Patterson has already been com- 
puted by Perutz (1949), the comparison with obser- 
vation can easily be made. 

In what follows, attention will be mainly concentrated 
on the part of the three-dimensional Patterson of the 
haemoglobin crystal in the neighbourhood of the 
X axis, and averaged between X -~ 4 9  and -t-15 •. 
This stretch is chosen because it avoids the region very 
near the origin, and because the vectors in it are 
mainly due to each short length of ~-helix with itself, 
and thus the relative arrangement of the various 
lengths of ~-helix in the molecule is not important here. 

All calculations will be made in terms not of the 
absolute height of the Patterson but of the height 
above the average (above zero as usually plotted with 
F~(000) omitted). I t  can be shown that  this can be 
done, and the liquid in the crystal ignored, if that  
liquid has an electron density near the average electron 
density of the protein, as happens to be the case here 
(Wrinch, 1950). 

Finally, it should be stated that  the above procedure 
can be looked at in a more rigorous manner by 
considering how a Patterson can be built up from the 
'self-Pattersons' and 'cross-Pattersons' of parts of the 
unit cell, and by working throughout with a fictitious 
electron density given by 

(actual electron density) -- (average electron density). 

Subsidiary calculations from this standpoint have 
shown, for example, that  diffraction effects in this 
particular problem are probably negligible, and that  
the averaging process will not produce serious errors. 

Simple theory 

Consider a single cylinder of constant electron density 
Q e.J~ -8, of cross-sectional area A, and of total length L 
placed between X - ~  --½L and X ~ ~½L, where X 
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is the axial direction. The average vector density of 
its Pat terson between the planes X -- -F11 and X = 
+ l  2 is 

[L--½(ll+12)]e2A/k e.2A -3 , 

all dimer/sions being in ~mgstrSm units. Here kA is 
the cross-sectional area over which the Patterson 
vectors spread, and over which the average is taken. 

Consider such rods, but  of infinite length in an 
infinite hexagonal lattice and so spaced tha t  the 
vectors in Pat terson space from one rod to itself do 
not overlap those between neighbouring rods; then 
the vector density, averaged over the volume covered 
by the vector rods, is 

L'~2A/k e.2/~k -3 , 

where L'  is the length of the nominal unit cell in the 
X direction. Since this vector density will be in- 
dependent of X we can calculate it from the two- 
dimensional end-on Patterson projection. 

In  practice the Patterson vectors between adjacent 
rods will overlap, but  by comparing cases in which 
the overlapping effects are very similar we can avoid 
appreciable errors due to this. 

For the more" complicated case of a rod whose 
electron density is a function of Y and Z, but  inde- 
pendent of X, the above expressions will still hold, 
as can be seen by  projecting the electron density on 
to the X axis. Note tha t  the contours of the vector 
density in cross-section (perpendicular to X) will have 
the same shape, though different absolute values, in 
the two cases for which formulae are given above. 
Thus the ratio of the values at  corresponding points 
in these two cases will be the same as the ratio of 
the average values over the corresponding cross- 
sections. Thus the ratio of the above expressions-- 
one referring to a model with rods infinitely long, the 
other to a model consisting of rods of limited length- -  
may be used to obtain the ratio of the vector densities 
at  the appropriate points. 

R e s u l t s  

(a) Height of vector peaks 
A section through the Fourier projection of the 

a-helix, placed in a hexagonal lattice 10.4 /~ apart,  
and viewed end-on, is given in Fig. 1. Note tha t  it is 
volcano shaped. Each unit of ordinate represents 
2.25 e.A -2 for 27 A length of chain. The corresponding 
Patterson projection is given in Fig. 2. Each contour 
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Fig. 1. A line section th rough  the  end-on project ion of the  
a-helix, under  l imited resolution. 
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Fig. 2. The  central  pa r t  of the  end-on Pa t t e r son  project ion 
of the  a-helix, u n d e r  l imited resolution. Average contour  
broken.  

represents an average vector density of 15 e.2/~ -3 for 
a unit cell 27/~ long. The chain and the Cfl atom have 
been given the co-ordinates listed by Pauling & Corey 
(1951) for the 18-residue 5-turn a-helix, and the 
remainder of the side chains have been put  in 
uniformly in the area outside a circle of radius 4 /~, 
with sufficient electron density to make the overall 
average density 0.43 e./~ -3. The 'heat-motion'  as- 
sumed was tha t  calculated for haemoglobin. I t  is 
rather stronger than  the value estimated by Perutz, 
a being taken as 25 instead of 20, where a is defined 
by ( / ) =  (I0) exp [--a~72] and ~7 is the reciprocal 
spacing in /~-1. The limiting circle was taken as 
2.8/~, to correspond with the haemoglobin data. The 
calculated height of the peak of the central vector rod, 
averaged over the chosen strip between X--= 9 and 
X----15 •, is given in Table 1 for several models. 
The last column includes a very rough allowance for 
vectors between chains with different X co-ordinates, 
assuming a plausible model for the molecule, while 
no such allowance is made in the preceding column. 
The observed height, obtained from the three- 
dimensional data  of Perutz, and put  on an absolute 
scale by measurements of Perutz, is 230 e.2/~ -3. 

Model No. of rods 
no. per  molecule 

1 13 
2 13 
3 26 
4 26 

Table 1. Calculated Patterson peaks 
(Values in e.2A-3.) 

Frac t ion  of 
Leng th  of polypept ide  

each rod (/k) chain in the  rods 
50 0.75 
40 0"60 
25 0,75 
16 0.48 

Peak  he ight ;  Peak  he ight ;  
no over lapping perfect  overlapping 

3000 3400 
2200 2200 
2000 3300 

625 790 

25* 
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(If allowance is made for the fact tha t  some of the 
important  intensities were rather underestimated, this 
can be corrected to 280 e.2/~1-3.) 

There is thus a discrepancy by a factor of 10 
between the vector density to be expected for a simple 
model of straight parallel chains and the observed 
density. This density is of the same order as the 
discrepancy by a factor of 9 in [F(063)12 noted by 
Bragg, Howells & Perutz (1952), and means that  the 
haemoglobin molocule cannot consist almost entirely 
of straight parallel a-helices. 

Moreover, the first three models in Table 1 are 
unlikely because they  give vector distributions of the 
wrong shape. The observed distribution along the 
X axis (see Fig. 3 (a)) of Bragg, Kendrew & Perutz, 
1950), when roughly smoothed, has a minimum 
between 10 and 15 A and a maximum around 27 A. 
This is compatible with models having short rods 
about 18 A long and about 27 /~ apart  in the X 
direction. Models in which the molecule is split into 
two by a plane roughly perpendicular to the X 
direction are plausible on other grounds, as shown by 
Bragg, Howells & Perutz (1952) in their discussion 
of models with an odd number of layers. The 
discrepancy in vector density is also least for the model 
(no. 4 in Table 1) with short, separated, rods. Note, 
however, tha t  this model has only about half the 
polypeptide chain in the rods. 

(b) Shape of the vector rods 
So far we have only compared the peak density of 

the vector rods and its variation along the X axis 
of the Patterson and have not yet  considered the 
vector distribution at  points near the X axis. Fig. 3 
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Fig. 3. Projection in the X direction of part of the central 
rods of the haemoglobin Patterson. X axis marked with 
a cross. Average contour broken, lower contours omitted. 

is a projection in the X direction of the central vector 
rod in the three-dimensional Patterson calculated for 
the interval X = 8.8-15 /~ from the origin. Each 
contour represents 61 e.%~ -3 of average vector density. 
I t  shows a central peak about 3 A wide, flanked by 
two subsidiary ones which do not come from a rod- 
shaped structure but from a peak at X = +8.3,  
Y = +2.7,  Z = - - 3 . 7  /~ together with its mirror 
image. By contrast, the corresponding Patterson peak 
of the a-helix (Fig. 2) has a width of 7 ~i, or more 
than twice that  observed in the three-dimensional 

Patterson. Since it could be argued tha t  a fairer com- 
parison would be between the total  positive vectors 
near the axis, and not between the peak densities, 
this difference in shape increases rather than diminishes 
the remaining discrepancy for model no. 4. While too 
much weight should not be placed on the details of 
this shape, the fact tha t  it is narrower than expected, 
rather than broader, has to be borne in mind when 
considering certain possible irregularities discussed 
below. 

Possible irregularities 

Under this heading will be discussed various factors 
which might reduce the density in the vector rods. 

(a) Lack of alignment of the two halves of the molecule 
I have found (Crick, unpublished) tha t  a displace- 

ment of the two halves of about 2-0-2.5 A in the 
c direction is consistent with the form of the rods in 
the ]7 = 0 plane of the three-dimensional Patterson. 
This displacement affects the X projection and has 
been considered independently by Bragg, Howells & 
Perutz (1952). I t  is one of the advantages of working 
in three dimensions, rather than two, tha t  such a 
displacement would have little effect on the regions 
of vector space considered here. I t  does not affect the 
calculated values of vector density given in column 5 
of Table 1 but it would reduce the figures given in 
column 6, as the vectors between chains with different 
X co-ordinates are now displaced from the X axis. 

(b) Tilting of the rods 
If the rods were straight and parallel, but  were 

tilted about the Y axis, the effect would show clearly 
in the Y -- 0 plane of the Patterson, which it does 
not; if about the c* axis it would spread out the vectors 
in a plane perpendicular to c*, which is not found to 
be so. 

(c) Meandering of the rods 
If the rods were broadly parallel, but  meandered, 

vectors would be thrown away from the central vector 
rod and its peak density would be reduced. Fig. 4 
shows the reduction in peak density due to a meander 
expressed as a root-mean-square deviation normal to 
the chain axis. This shows tha t  to reduce the peak 

, 0  ¸ 

0"8 
0"6 

0"4 

0"2 

' I i I I I 

0 1 2 3 

Fig. 4. Ordinate: reduction factor for pe. k vector density due 
to meandering of the chains. Abscis>.a: root mean square 
value of the meander. 
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height by a factor of 2, a r.m.s, deviation of 1~ A is 
required. This is quite a large variation over a length 
of 12 A when it is considered tha t  the r.m.s, radial 
deviation from the average direction evaluated for all 
the atoms in the polypeptide main chain must amount 
to 1½ A. I t  remains to be seen whether an c~-helix 
can meander as much as this without breaking its 
hydrogen-bond sequence. In  my opinion this is un- 
likely. 

I t  should be noted, moreover, tha t  a meander of the 
type considered would broaden the vector peak as 
well as flatten it. As noted above, there is little sug- 
gestion of this in Fig. 3. 

(d) Non-parallelism and kinking 
If the rods were straight, but  only approximately 

parallel, vectors would again be thrown away from 
the central peak. If the angular deviations were small 
this should again lead to broadening of the peak; if 
large, the vectors might be thrown right outside, but 
one might expect packing difficulties unless such rods 
were on the surface of the" molecule. 

If the rods were k inked- - tha t  is, straight for short 
distances and then bent at an angle--similar remarks 
would apply. 

(e) Turning corners 
If the rods are short, there must be a large number 

of them making up the molecule. Since it is suspected 
from end-group assay tha t  there are only six separate 
chains in horse haemoglobin (Porter & Sanger, 1948), 
plausible models are found to contain over 20 corners, 
where a 'corner' means a piece of polypeptide chain 
connecting the ends of two rods. This has been 
discussed independently by Bragg, Howells & Perutz 
(1952). 

The number of corners is thus comparable with the 
number of rods. In  Table 1 no allowance has been 
made for the reduction of peak vector density due to 
this complication. This is the biggest source of error 
in the calculations. 

If the additional vectors were distributed largely at  
random, they would make no difference to the vector 
heights measured above average. I t  is more likely 
tha t  the vectors between the rods and the corners will 
tend to fall into the space between the main vector rods. 
They might reduce the apparent vector density of the 
rods, but  are unlikely to do so by a large factor. 
Without  a definite model for the corners it is im- 
possible to be more precise. If the peak height were 
reduced in this way, the same effect might explain 
the narrowness of the peak in Fig. 3, just as the 
apparent width of Mount Ararat  was decreased by the 
Flood. 

Other types of fold 

All these calculations have been done for the a-helix, 
but the broad results (not the details about shape of 
peaks) are likely to apply to any regular fold of the 

polypeptide chain .  They can be repeated for any 
particular case, though the pseudo-cylindrical sym- 
metry  of the a-helix makes this particular calculation 
peculiarly simple. Previous approximate calculations 
(unpublished) on the Astbury  213 chain (see Bragg, 
Kendrew & Perutz, 1950) gave peak heights of the 
same order of magnitude as for the a-helix. 

Asymmetry 

There is one further general feature of the three- 
dimensional Pat terson of horse haemoglobin which is 
puzzling, and tha t  is the asymmetry  both of Fig. 3 
and of the 5 /~  shell (see Perutz, 1949). The Patterson 
of an infinite a-helix has practically cylindrical sym- 
metry,  and one might have expected this to be more 
apparent in the haemoglobin Patterson, unless the 
lengths of c~-helix were very short. While the asym- 
metry  might be due to the individual arrangements of 
the different side-chains, their general arrangement is 
likely to be loosely based on hexagonal symmetry,  
and one would have surmised tha t  deviations from 
this would tend to be random. The observed asym- 
metry  suggests, rather,  a more profound asymmetry  
in the arrangement of the folded polypeptide chains. 

Conclusions and general discussion 

We have found tha t :  
(1) The absolute height of the vector rods cannot 

be reconciled with any model having more than about 
half the protein in straight rods parallel to the X axis. 

(2) Better  agreement in peak height can be obtained 
by postulating certain irregularities, but  these cannot 
easily be reconciled with the shape of the vector peak. 

(3) There is no evidence to support  rods of 50 A 
or so in length. The data  suggest rods of, say, 18 /~ 
in length, or less, and tha t  the molecule is split into 
two halves, about 27 A apart,  probably by a plane 
roughly perpendicular to the X axis. 

(4) None of the simple models considered here gives 
really good quanti tat ive agreement with the height 
and shape of the vector peak. 

What  we have shown is tha t  the haemoglobin 
structure cannot be as simple as, say, a synthetic 
polypeptide. This is in line with other evidence, such 
as the smallness of the infra-red dichroism (Elliott & 
Ambrose, 1950) and the diffuseness of the 1.5 A 
reflection (Perutz, 1951a), both of which support the 
rod model qualitatively. 

I t  is clear tha t  somehow we must introduce into our 
simple initial picture sufficient irregularity to throw 
the vectors away from the central Patterson rod. I t  is 
possible tha t  this can be done by making the chain 
irregular, but the irregularities must be large, probably 
involving the rearrangement of bonds, and not merely 
the straining of them. Alternatively we can make the 
chains k inked- - tha t  is, straight for short stretches and 
then bent at  an angle. Other possibilities, such as the 
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rods being curved or kinked into a super helix, suggest 
themselves. In  any case allowance must be made for 
the chains to turn  corners. 

The most important  positive conclusion is tha t  the 
length of the rods is probably rather small (15-20 A). 
This suggests tha t  globular proteins are really three- 
dimensional in their 'architecture',  and not two- 
dimensional like the synthetic polypeptides. That  is to 
say, whereas the broad structure of a synthetic 
polypeptide can be conveniently represented dia- 
grammatically by  a projection in the rod direction, 
a globular protein may  be more like a three-dimensional 
framework, and may  need a perspective drawing to 
show its main features. Whether this three-dimensional 
architecture conforms to a single general plan, or 
whether it is specific for each protein, or bit of a 
protein, remains to be,~een. 

Finally it  must not be concluded tha t  because of the 
poor quanti tat ive agreement between observation and 
calculation we can immediately reject the rod model 
and c~-helices.. The method of calculation used is 
suitable for simple models, and becomes progressively 
more unreliable as we introduce complications. A more 
lengthy and accurate calculation would be needed to 
show whether the discrepancies in absolute height, 
projected shape, and asymmetry  of the Patterson 

require a completely new model or whether they  arise 
natural ly out of simple modifications to the present 
model with short rods. 

I should like to thank Dr M. F. Perutz both for 
allowing me to use unpublished material and for 
considerable advice on the presentation of the results. 
I should also like to thank Prof. Sir Lawrence Bragg, 
Dr W. Cochran and Dr J. C. Kendrew for helpful 
discussions. 
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Determination of Elastic Constants of Lithium Fluoride from Photographs of 
Diffuse Reflexions of X-rays  
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A photographic method of determining elastic constants from the study of diffuse X-ray 
reflexions has been developed and applied to lithium fluoride. The results are as follows: 
c n = 9.9X 10 n,  ci,  ---- 4.3× 10 n,  c44 = 5 . 4 ×  10 n dyne cm -~. 

Thermal vibrations of the atoms in a crystal give rise 
in reciprocal space to scattering from regions other 
than the points of the reciprocal lattice. The theoretical 
distribution of this extra scattering density has been 
given by Jahn  (1942) for cubic crystals, and it depends 
on the elastic constants of the crystal. Lonsdale & 
Smith (1941, 1942) have shown tha t  there was 
qualitative agreement with this theory when the 
diffuse X-rays were photographically recorded, and 
Ramachandran & Wooster (1951a, b), using a Geiger 
counter, have obtained the elastic constants for several 
cubic crystals. 

We have used the photographic method to s tudy 

quanti tat ively the diffuse reflexions obtained with 
LiF. A camera of radius 10 cm. and monochromatized 
C u K ~  radiation have been used, and the film 
blackening was measured with a Dobson micro- 
photometer. Charts" have been constructed to deter- 
mine conveniently which point in reciprocal space 
corresponds to a given point of the diffuse spot 
(Hoerni & Wooster, in press). Although measurements 
at  only three different points of the diffuse spot are in 
principle required to solve Jahn 's  equation for the 
elastic constants, many more observations have been 
made in order to check the results. The measurement 
of relative intensities within any one spot permits 


